Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Amorphous thin films of Ti doped GeO2are of interest for coatings of the mirrors in gravitational wave detectors (GWDs) due to their low internal friction (Vajenteet al2021Phys. Rev. Lett.127071101). The addition of Ti to amorphous GeO2(a-GeO2) enables tailoring of the optical and structural properties of the mixtures. However, the specific modifications that occur in the amorphous network with the addition of Ti are not known. In this work, x-ray photoelectron spectroscopy is used to identify modifications to the bonding of Ge and Ti atoms in mixtures of Ti dopeda-GeO2with different Ti cation content. The formation of (Ti–O–Ge) bonds is evidenced from: (1) the presence of a peak which intensity increases with Ti content and causes a shift to lower binding energy (BE) of the core level O 1speak; (2) the shift to higher BE of the Ti 2p3/2peak and a decrease in the energy split; and (3) the shift to lower BE of the Ge 3d5/2peak and increase in the energy split. These changes reflect modifications to the bonding when Ge replaces Ti in Ti–O–Ti bonds and Ti replaces Ge in Ge–O–Ge bonds due to their difference in electronegativity. A decrease in the O–O nearest-neighbour distance due to the incorporation of Ti atom is also observed from the broadening of the valence band spectra. The results show the 0.44 Ti dopeda-GeO2mixture has a balance between the (Ti–O–Ge) and the (Ge–O–Ge) networks, not observed in Ti poor and Ti rich mixtures. This finding could have important consequences in the optimisation of amorphous Ti dopeda-GeO2mixtures for low internal friction coatings of GWDs.more » « less
-
Glasses are nonequilibrium solids with properties highly dependent on their method of preparation. In vapor-deposited molecular glasses, structural organization could be readily tuned with deposition rate and substrate temperature. Here, we show that the atomic arrangement of strong network-forming GeO 2 glass is modified at medium range (<2 nm) through vapor deposition at elevated temperatures. Raman spectral signatures distinctively show that the population of six-membered GeO 4 rings increases at elevated substrate temperatures. Deposition near the glass transition temperature is more efficient than postgrowth annealing in modifying atomic structure at medium range. The enhanced medium-range organization correlates with reduction of the room temperature internal friction. Identifying the microscopic origin of room temperature internal friction in amorphous oxides is paramount to design the next-generation interference coatings for mirrors of the end test masses of gravitational wave interferometers, in which the room temperature internal friction is a main source of noise limiting their sensitivity.more » « less
An official website of the United States government
